A CONVENIENT SYNTHESIS OF 4e-CHLOROADAMANTYLIDENEADAMANTANE BY MEANS OF THE REACTION OF PHENYLSULFENYL CHLORIDE WITH ADAMANTYLIDENEADAMANTANE.

John Bolster, Richard M. Kellogg*, Egbert W. Meijer, and Hans Wynberg Department of Organic Chemistry, The University, Nijenborgh, 9747 AG Groningen, The Netherlands

We have reported that the reaction of methylsulfenyl halides with adamantylidene-adamantane $(\underline{1})$ leads to the formation of a thiiranium salt $(\underline{2})$, which in some instances can be isolated. On treatment with nucleophiles the salt $(\underline{2a})$ can undergo either desulfurization or demethylation.

Virtually simultaneously with our report of this reaction $Garratt^2$ reported that the reaction of 1 with phenylselenyl chloride leads to spiro compound 3.

We have now investigated the reaction of phenylsulfenyl chloride with $\underline{1}$; this is found to afford an excellent preparative route to 4e-chloroadamantylideneadamantane $\underline{4}$. Up to now $\underline{4}$ has only been available through direct chlorination of $\underline{1}$, followed by a tedious isolation procedure. Derivatives of $\underline{1}$, obtainable through $\underline{4}$, are of much interest in connection with, for example, studies of additions of electrophiles and singlet oxygen.

Treatment of $\underline{1}$ (26.8 gr. 0.1 mole) in CH_2Cl_2 (250 ml) with phenylsulfenyl chloride (31.7 gr. 0.22 mole) led to immediate evolution of HCl. After 8 hours $\underline{4}$ was formed nearly quantitatively as indicated by 1H -NMR spectroscopy. To isolate 4 from diphenyldisulfide and a

Equatorial with respect to the 2,4-substituted cyclohexyl ring. See also H. Numan and H. Wynberg, \underline{J} . Org. Chem., $\underline{43}$, 2232 (1978).

286 No. 3

small amount of unreacted $\underline{1}$ the reaction mixture - after evaporation of $\mathrm{CH_2Cl_2}$ - is put in an ice bath and $\mathrm{CCl_4}$ (350 ml) was added, followed by an excess of $\mathrm{Br_2}$ to generate the bromonium salts, which are isolated by filtration and subsequently repeatedly rinsed with a solution of $\mathrm{Br_2}$ in $\mathrm{CCl_4}$ to remove the last traces of diphenyldisulfide. The salt of $\underline{4}$ decomposes on washing with ether whereas that of $\underline{1}$ is stable. The red solution of $\underline{4}$ and $\mathrm{Br_2}$ thereby obtained is washed with $\mathrm{Na_2SO_3}$ until colorless and is dried over $\mathrm{MgSO_4}$. Removal of the solvent gives 25.6 gr. (0.085 mole, 85%) of spectroscopically pure $\underline{4}$. An analytically pure sample of $\underline{4}$ is obtained by recrystallization from $\mathrm{CH_3OH}$ and sublimation, m.p. 144-145°.*

A plausible mechanism for the $\underline{1} \rightarrow \underline{4}$ conversion is shown in the Scheme. We were unable to detect by ${}^1\text{H-NMR}$ the thiiranium salt (5), although this seems a reasonable intermediate.

The chain of events subsequent to formation of (5) represents one of the few reactions courses open to the thiiranium ion.

References:

- 1. J. Bolster and R.M. Kellogg, J. Chem. Soc. Chem. Comm., 630 (1978).
- 2. D.G. Garratt, Tetrahedron Letters, 1915 (1978).
- 3. J.H. Wieringa, J. Strating, and H. Wynberg, Tetrahedron Letters, 4579 (1970).
- 4. J. Strating, J.H. Wieringa and H. Wynberg, J. Chem. Soc. Chem. Commun., 907 (1969).
- 5. H. Wynberg and H. Numan, J. Am. Chem. Soc., 99, 604 (1977).
- 6. A.C. Udding, J. Strating, and H. Wynberg, Tetrahedron Letters, 1345 (1968).

^{*}A slight excess over the theoretical 2 eqv of C₆H₅SCl leads to the best results, larger excesses result in overchlorination. (Attempts to allow C₆H₅SBr to react with 1 led only to the formation of the bromonium salt of 1). Spectra data for 4: 1 H-NMR (CDCl $_{3}$): 8 4.T5 (1H), 8 3.2-2.65 (4H), 8 2.6-1.15 (22H); 13 C-NMR (C₆D₆, 8 128 ppm) 8 137.134 (1C, sp²), 8 131.411 (1C, sp²), 8 68.134 (1C, d, 1 J_C-H = 132 Hz). The absorptions for the rest of the carbon atoms lie between 8 39.882 and 28.069; mass spectrum: m/e 302/304 (3:1); i.r. (KBr): 1095, 975, 798 and 710 cm⁻¹. A satisfactory elemental analysis was obtained.